Quasi-isometries and wreath products Scaling quasi-isometries Algebraic consequences

Scaling quasi-isometries and subgroups of wreath products

Vincent Dumoncel

IMJ-PRG, University of Paris

July 10, 2025

Quasi-isometries and wreath products
Scaling quasi-isometries
Algebraic consequences
Computing appropriate appropr

Quasi-isometries and wreath products

Quasi-isometries

For a finitely generated group $G = \langle S_G \rangle$, we define the *word length* of an element $g \in G$ as

$$|g|_{S_G} := \min\{n \ge 0 : \exists s_1, \dots, s_n \in S_G \cup S_G^{-1}, g = s_1 \dots s_n\}$$

and the $word\ metric$ associated to S_G as $d_G(g,h)\coloneqq |g^{-1}h|_{S_G}.$

Quasi-isometries

For a finitely generated group $G = \langle S_G \rangle$, we define the *word length* of an element $g \in G$ as

$$|g|_{S_G} := \min\{n \ge 0 : \exists s_1, \dots, s_n \in S_G \cup S_G^{-1}, g = s_1 \dots s_n\}$$

and the word metric associated to S_G as $d_G(g,h) := |g^{-1}h|_{S_G}$.

Definition

Let G and H be two finitely generated groups. A map $f: G \longrightarrow H$ is a quasi-isometry if there exist $C \ge 1$, $K \ge 0$ such that

- $\frac{1}{C} \cdot d_G(g,h) K \le d_H(f(g),f(h)) \le C \cdot d_G(g,h) + K$ for all $g,h \in G$;
- $d_H(h, f(G)) \leq K$ for all $h \in H$.

Quasi-isometries

For a finitely generated group $G = \langle S_G \rangle$, we define the *word length* of an element $g \in G$ as

$$|g|_{S_G} := \min\{n \ge 0 : \exists s_1, \dots, s_n \in S_G \cup S_G^{-1}, g = s_1 \dots s_n\}$$

and the word metric associated to S_G as $d_G(g,h) := |g^{-1}h|_{S_G}$.

Definition

Let G and H be two finitely generated groups. A map $f: G \longrightarrow H$ is a quasi-isometry if there exist $C \ge 1$, $K \ge 0$ such that

- $\frac{1}{C} \cdot d_G(g,h) K \le d_H(f(g),f(h)) \le C \cdot d_G(g,h) + K$ for all $g,h \in G$;
- $d_H(h, f(G)) \leq K$ for all $h \in H$.

Equivalently, f satisfies the first point above and there exists a map $g: H \longrightarrow G$ such that $d(g \circ f, \mathrm{Id}_G), d(f \circ g, \mathrm{Id}_H) \leq K$, where for two maps $h_1, h_2: G \longrightarrow H$ defined over G, their distance is

$$d(h_1, h_2) := \sup_{g \in G} d_H(h_1(g), h_2(g)).$$

Wreath products

Let G and H be two groups. Their wreath product $G \wr H$ is the group defined as

$$G \wr H := \left(\bigoplus_{H} G\right) \rtimes H$$

where H acts on $\bigoplus_H G$ by permuting the coordinates according to its action on itself by left-multiplication.

Wreath products

Let G and H be two groups. Their wreath product $G \wr H$ is the group defined as

$$G \wr H := \left(\bigoplus_{H} G\right) \rtimes H$$

where H acts on $\bigoplus_H G$ by permuting the coordinates according to its action on itself by left-multiplication.

If in addition $G = \langle S_G \rangle$ and $H = \langle S_H \rangle$ are finitely generated, then $G \wr H$ is finitely generated as well, and the finite set

$$\{\delta_a: a \in S_G\} \cup S_H$$

generates $G \wr H$, where $\delta_a \colon H \longrightarrow G$ sends 1_H to $a \in G$ and any other $h \neq 1_H \in H$ to 1_G .

Wreath products

Let G and H be two groups. Their wreath product $G \wr H$ is the group defined as

$$G \wr H := \left(\bigoplus_{H} G\right) \rtimes H$$

where H acts on $\bigoplus_H G$ by permuting the coordinates according to its action on itself by left-multiplication.

If in addition $G = \langle S_G \rangle$ and $H = \langle S_H \rangle$ are finitely generated, then $G \wr H$ is finitely generated as well, and the finite set

$$\{\delta_a: a\in S_G\}\cup S_H$$

generates $G \wr H$, where $\delta_a \colon H \longrightarrow G$ sends 1_H to $a \in G$ and any other $h \neq 1_H \in H$ to 1_G .

Question: When are $G_1 \wr H_1$ and $G_2 \wr H_2$ quasi-isometric?

Genevois-Tessera's results

Genevois and Tessera completely answer the question for wreath products over finitely presented one-ended groups:

Genevois-Tessera's results

Genevois and Tessera completely answer the question for wreath products over finitely presented one-ended groups:

Theorem [GT21]

Let F_1 and F_2 be non-trivial finite groups. Let G_1 and G_2 be finitely presented one-ended groups. Then the following hold.

- If G₁ is not amenable, then F₁ ≀ G₁ and F₂ ≀ G₂ are quasi-isometric if and only if |F₁| and |F₂| have the same prime divisors and there exists a quasi-isometry G₁ → G₂.
- If G_1 is amenable, then $F_1 \wr G_1$ and $F_2 \wr G_2$ are quasi-isometric if and only if there exist $a, r, s \ge 1$ such that $|F_1| = a^r$, $|F_2| = a^s$ and a quasi- $\frac{s}{r}$ -to-one quasi-isometry $G_1 \longrightarrow G_2$.

uasi-isometries and wreath products
Scaling quasi-isometries
Algebraic consequences
Geometric consequences

Scaling quasi-isometries

Definition

Let G, H be finitely generated groups and let $f: G \longrightarrow H$ be a quasi-isometry. Let k > 0. We say that f is quasi-k-to-one if there exists C > 0 such that

$$|k|A| - |f^{-1}(A)| \le C \cdot |\partial_H A|$$

for all finite subsets $A \subset H$, where $\partial_H A := \{ h \in H \setminus A : \exists a \in A, d_H(h, a) = 1 \}$.

In that case, we say that f is *measure-scaling*, and that k is the *scaling factor*.

Definition

Let G, H be finitely generated groups and let $f: G \longrightarrow H$ be a quasi-isometry. Let k > 0. We say that f is quasi-k-to-one if there exists C > 0 such that

$$|k|A| - |f^{-1}(A)| \le C \cdot |\partial_H A|$$

for all finite subsets $A \subset H$, where $\partial_H A := \{h \in H \setminus A : \exists a \in A, d_H(h, a) = 1\}.$

In that case, we say that f is *measure-scaling*, and that k is the *scaling factor*. One motivation for the notion is a famous result of Whyte, stating that:

Theorem [Why99]

Let G and H be finitely generated groups. A quasi-isometry $f: G \longrightarrow H$ is quasi-one-to-one if and only if it lies at bounded distance from a bijection.

Another observation: the condition holds for any k > 0 if G is not amenable.

Another observation: the condition holds for any k > 0 if G is not amenable.

On the other hand, in amenable situations, the scaling factor is unique when it exists:

Lemma [GT22]

Let $f : G \longrightarrow H$ be a quasi-isometry between amenable finitely generated groups. If f is quasi-k-to-one and quasi-k'-to-one, then k = k'.

Another observation: the condition holds for any k > 0 if G is not amenable.

On the other hand, in amenable situations, the scaling factor is unique when it exists:

Lemma [GT22]

Let $f : G \longrightarrow H$ be a quasi-isometry between amenable finitely generated groups. If f is quasi-k-to-one and quasi-k'-to-one, then k = k'.

Main example to keep in mind: if $H \le G$ has finite index, the inclusion $H \hookrightarrow G$ is quasi- $\frac{1}{[G:H]}$ -to-one.

Additionally, we have the following stability properties:

Proposition [GT22]

Let G,H,K be three finitely generated groups. Let $f,h\colon G\longrightarrow H,g\colon H\longrightarrow K$ be quasi-isometries.

Additionally, we have the following stability properties:

Proposition [GT22]

Let G, H, K be three finitely generated groups. Let $f, h \colon G \longrightarrow H, g \colon H \longrightarrow K$ be quasi-isometries.

 If f is quasi-k-to-one and h is at bounded distance from f, then h is quasi-k-to-one.

Additionally, we have the following stability properties:

Proposition [GT22]

Let G,H,K be three finitely generated groups. Let $f,h\colon G\longrightarrow H,g\colon H\longrightarrow K$ be quasi-isometries.

- If f is quasi-k-to-one and h is at bounded distance from f, then h is quasi-k-to-one.
- If f is quasi-k-to-one and g is quasi-k'-to-one, then $g \circ f$ is quasi-kk'-to-one.

Additionally, we have the following stability properties:

Proposition [GT22]

Let G,H,K be three finitely generated groups. Let $f,h\colon G\longrightarrow H,g\colon H\longrightarrow K$ be quasi-isometries.

- If f is quasi-k-to-one and h is at bounded distance from f, then h is quasi-k-to-one.
- If f is quasi-k-to-one and g is quasi-k'-to-one, then $g \circ f$ is quasi-kk'-to-one.
- If f is quasi-k-to-one, then any of its quasi-inverses is quasi- $\frac{1}{k}$ -to-one.

Additionally, we have the following stability properties:

Proposition [GT22]

Let G,H,K be three finitely generated groups. Let $f,h\colon G\longrightarrow H,g\colon H\longrightarrow K$ be quasi-isometries.

- If f is quasi-k-to-one and h is at bounded distance from f, then h is quasi-k-to-one.
- If f is quasi-k-to-one and g is quasi-k'-to-one, then $g \circ f$ is quasi-kk'-to-one.
- If f is quasi-k-to-one, then any of its quasi-inverses is quasi- $\frac{1}{k}$ -to-one.

Thus, when G is amenable, there is a well-defined group morphism

$$\operatorname{Sc} : \operatorname{QI}_{\operatorname{sc}}(G) \longrightarrow (\mathbb{R}_{>0}, \cdot)$$

where $\mathrm{QI}_{\mathrm{sc}}(G)=\{\mathrm{scaling}\ \mathrm{QI}\ G\longrightarrow G\}/\mathrm{bounded}\ \mathrm{distance},\ \mathrm{sending}\ f\in \mathrm{QI}_{\mathrm{sc}}(G)\ \mathrm{to}$ its scaling factor. The image of this morphism, denoted $\mathrm{Sc}(G)$, is called the $\mathrm{scaling}\ group\ of\ G.$

Main questions about scaling QI:

Main questions about scaling QI:

• Given G finitely generated and amenable, how to compute Sc(G)?

Main questions about scaling QI:

- Given G finitely generated and amenable, how to compute Sc(G)?
- Given G finitely generated and amenable, is any quasi-isometry $f:G\longrightarrow G$ measure-scaling?

Main questions about scaling QI:

- Given G finitely generated and amenable, how to compute Sc(G)?
- Given G finitely generated and amenable, is any quasi-isometry $f:G\longrightarrow G$ measure-scaling?

Proposition [GT22]

- $Sc(\mathbb{Z}^d) = Sc(\mathbb{R}^d) = \mathbb{R}_{>0}$ for all $d \ge 1$.
- $Sc(BS(1, n)) = \mathbb{R}_{>0}$ for any $n \ge 1$;
- $Sc(SOL(\mathbb{Z})) = \mathbb{R}_{>0}$.

On the other hand, for lamplighters over one-ended groups, we have:

Proposition [GT21]

Let F_1 and F_2 be non-trivial finite groups, and let G_1 and G_2 be finitely presented amenable one-ended groups. Then any quasi-isometry $F_1 \wr G_1 \longrightarrow F_2 \wr G_2$ is quasi- $\frac{s}{r}$ -to-one, where $|F_1| = a^r$ and $|F_2| = a^s$.

On the other hand, for lamplighters over one-ended groups, we have:

Proposition [GT21]

Let F_1 and F_2 be non-trivial finite groups, and let G_1 and G_2 be finitely presented amenable one-ended groups. Then any quasi-isometry $F_1 \wr G_1 \longrightarrow F_2 \wr G_2$ is quasi- $\frac{s}{r}$ -to-one, where $|F_1| = a^r$ and $|F_2| = a^s$.

In particular, $\mathrm{Sc}(F \wr G) = \{1\}$ when F is finite and G is amenable, finitely presented and one-ended.

We show a similar result for lamplighters with lamps of polynomial growth:

We show a similar result for lamplighters with lamps of polynomial growth:

Theorem [Dum25+]

Let N and M be polynomial growth groups, of growth degrees n and m. Let G and H be finitely presented amenable groups from \mathcal{M}_{\exp} . Then any quasi-isometry $N \wr G \longrightarrow M \wr H$ is quasi- $\frac{m}{n}$ -to-one.

We show a similar result for lamplighters with lamps of polynomial growth:

Theorem [Dum25+]

Let N and M be polynomial growth groups, of growth degrees n and m. Let G and H be finitely presented amenable groups from \mathcal{M}_{\exp} . Then any quasi-isometry $N \wr G \longrightarrow M \wr H$ is quasi- $\frac{m}{n}$ -to-one.

The class \mathcal{M}_{exp} has been introduced very recently by Bensaid-Genevois-Tessera, in their study of quasi-isometries of such wreath products. It contains many amenable groups:

- BS(1, n) (n \geq 2), and BS(1, n) \times G where G is amenable;
- lamplighters over amenable groups, e.g. $F \wr \mathbb{Z}$;
- SOL(ℤ),...

As a direct consequence of the theorem:

We show a similar result for lamplighters with lamps of polynomial growth:

Theorem [Dum25+]

Let N and M be polynomial growth groups, of growth degrees n and m. Let G and H be finitely presented amenable groups from \mathcal{M}_{\exp} . Then any quasi-isometry $N \wr G \longrightarrow M \wr H$ is quasi- $\frac{m}{n}$ -to-one.

The class \mathcal{M}_{exp} has been introduced very recently by Bensaid-Genevois-Tessera, in their study of quasi-isometries of such wreath products. It contains many amenable groups:

- BS(1, n) $(n \ge 2)$, and BS(1, n) \times G where G is amenable;
- lamplighters over amenable groups, e.g. $F \wr \mathbb{Z}$;
- SOL(ℤ),...

As a direct consequence of the theorem:

Corollary [Dum25+]

We have $Sc(N \wr G) = \{1\}$ when N has polynomial growth and $G \in \mathcal{M}_{exp}$ is finitely presented and amenable.

tuasi-isometries and wreath products
Scaling quasi-isometries
Algebraic consequences
Competing consequences

Algebraic consequences

Finite-index subgroups

The previous corollary allows to show easily some nice facts. First:

Corollary

If N has polynomial growth and $G \in \mathcal{M}_{exp}$ is finitely presented and amenable, then $N \wr G$ has no proper finite-index subgroups isomorphic to itself.

Finite-index subgroups

The previous corollary allows to show easily some nice facts. First:

Corollary

If N has polynomial growth and $G \in \mathcal{M}_{exp}$ is finitely presented and amenable, then $N \wr G$ has no proper finite-index subgroups isomorphic to itself.

Proof: Let $H\leqslant N\wr G$ be such that $H\cong N\wr G$ and $[N\wr G:H]<\infty$. Then, by composing the isomorphism, which is quasi-one-to-one, and the natural inclusion, which is quasi- $\frac{1}{[N\wr G:H]}$ -to-one, one gets a quasi- $\frac{1}{[N\wr G:H]}$ -to-one quasi-isometry

$$N \wr G \longrightarrow H \hookrightarrow N \wr G$$
.

Thus
$$\frac{1}{[N\wr G:H]}\in\operatorname{Sc}(N\wr G)=\{1\},$$
 so $[N\wr G:H]=1$ and $H=N\wr G.$ \square

Finite-index subgroups

The previous corollary allows to show easily some nice facts. First:

Corollary

If N has polynomial growth and $G \in \mathcal{M}_{exp}$ is finitely presented and amenable, then $N \wr G$ has no proper finite-index subgroups isomorphic to itself.

Proof: Let $H\leqslant N\wr G$ be such that $H\cong N\wr G$ and $[N\wr G:H]<\infty$. Then, by composing the isomorphism, which is quasi-one-to-one, and the natural inclusion, which is quasi- $\frac{1}{[N\wr G:H]}$ -to-one, one gets a quasi- $\frac{1}{[N\wr G:H]}$ -to-one quasi-isometry

$$N \wr G \longrightarrow H \hookrightarrow N \wr G$$
.

Thus $\frac{1}{[N\wr G:H]}\in \operatorname{Sc}(N\wr G)=\{1\}$, so $[N\wr G:H]=1$ and $H=N\wr G$. \square In fact, more generally:

Corollary

If $H_1, H_2 \leq N \wr G$ have finite-index and are isomorphic, then $[N \wr G : H_1] = [N \wr G : H_2]$.

uasi-isometries and wreath products
Scaling quasi-isometries
Algebraic consequences
Geometric consequences

Geometric consequences

From our theorem and from Genevois-Tessera's result, the existence of a quasi-isometry between some iterated wreath products imposes a compatibility condition between cardinalities of lamp groups and some growth degrees:

From our theorem and from Genevois-Tessera's result, the existence of a quasi-isometry between some iterated wreath products imposes a compatibility condition between cardinalities of lamp groups and some growth degrees:

Corollary [Dum25+]

Let $n, m \geq 2$ and let N_1 and N_2 be polynomial growth groups, of growth degrees n_1 and n_2 . Let G and H be finitely presented amenable groups from \mathcal{M}_{exp} . If there is a quasi-isometry

$$\mathbb{Z}_n \wr (N_1 \wr G) \longrightarrow \mathbb{Z}_m \wr (N_2 \wr H)$$

then there exist $a, r, s \ge 1$ such that $n = a^r$, $m = a^s$ and $\frac{s}{r} = \frac{n_2}{n_1}$.

From our theorem and from Genevois-Tessera's result, the existence of a quasi-isometry between some iterated wreath products imposes a compatibility condition between cardinalities of lamp groups and some growth degrees:

Corollary [Dum25+]

Let $n, m \geq 2$ and let N_1 and N_2 be polynomial growth groups, of growth degrees n_1 and n_2 . Let G and H be finitely presented amenable groups from \mathcal{M}_{exp} . If there is a quasi-isometry

$$\mathbb{Z}_n \wr (N_1 \wr G) \longrightarrow \mathbb{Z}_m \wr (N_2 \wr H)$$

then there exist $a, r, s \ge 1$ such that $n = a^r, m = a^s$ and $\frac{s}{r} = \frac{n_2}{n_1}$.

For instance, if $n \geq 2$, there is no quasi-isometry

$$\mathbb{Z}_2 \wr (\mathbb{Z}^2 \wr \mathrm{BS}(1,n)) \longrightarrow \mathbb{Z}_4 \wr (\mathbb{Z}^3 \wr \mathrm{BS}(1,n))$$

and no other invariant seems to be able to distinguish them, they have:

- Same asymptotic dimension, same number of ends;
- Same type of growth, same isoperimetric profile (Erschler '03 [Erso3]);
- Both are not hyperbolic;
- Both do not have the thick bigon property (Genevois-Tessera '24 [GT24]);
- Both do not have Shalom's property $H_{\rm FD}$ (Brieussel-Zheng '19 [BZ19]);
- Both have linear divergence;
- . . .

References

- Amenability, bi-Lipschitz equivalence, and the Von Neumann conjecture, Duke Math. Journal, 99(1):93-112, 1999. [Why99]
- On isoperimetric profiles of finitely generated groups, Geom. Dedicata, 100:157-171, 2003. [Erso3]
- Shalom's property H_{FD} and extensions by Z of locally finite groups, Israel J. Math., 230(1):45-70, 2019. [BZ19]
- Asymptotic geometry of lamplighters over one-ended groups, Inventiones Mathematicae, 238(1):1-67, 2024. [GT21]
- Measure-scaling quasi-isometries, Geom. Dedicata, 216(3), 34, 19, 2022. [GT22]
- Lamplighter-like geometry of groups, arXiv:2401.13520, 2024. [GT24]
- Quasi-isometric rigidity of lamplighters with lamps of polynomial growth, arXiv:2502.01849, 2025. [Dum25+]